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Top 20 things policy makers need to know 
about science 
 

The following tips, originally addressed to politicians and first published in 
Nature, were compiled by William Sutherland, a zoologist, and David 
Spiegelhalter, a statistician – both from the University of Cambridge – and 
Mark Burgman, an ecologist at the University of Melbourne. 

The trio argued the “immediate priority is to improve policy makers’ 
understanding of the imperfect nature of science” by suggesting 20 
concepts that should be taught to government ministers and public 
servants. 

1. Differences and chance cause variation 

The real world varies unpredictably. Science is mostly about discovering 
what causes the patterns we see. Why is it hotter this decade than last? Why 
are there more birds in some areas than others? There are many 
explanations to such trends, so the main challenge of research is teasing 
apart the importance of the process of interest (for example, the effect of 
climate change on bird populations) from the innumerable other sources of 
variation. 

2. No measurement is exact 

Practically all measurements have some error. If the measurement process 
were repeated, one might record a different result. In some cases, the 
measurement error might be large compared with real differences. Thus, if 
you are told that the economy grew by 0.13% last month, there is a 
moderate chance that it may actually have shrunk. 

3. Bias is rife 

Experimental design or measuring devices may produce atypical results in 
a given direction. For example, determining voting behaviour by asking 
people on the street, at home or through the internet will sample different 
proportions of the population, and all may give different results. Because 
studies that report “statistically significant” results are more likely to be 
written up and published, the scientific literature tends to give an 
exaggerated picture of the magnitude of problems or the effectiveness of 
solutions. 
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4. Bigger is usually better for sample size 

The average taken from a large number of observations will usually be more 
informative than the average taken from a smaller number of observations. 
That is, as we accumulate evidence, our knowledge improves. 

5. Correlation does not imply causation 

It is tempting to assume that one pattern causes another. However, the 
correlation might be coincidental, or it might be a result of both patterns 
being caused by a third factor – a “confounding” or “lurking” variable. For 
example, ecologists at one time believed that poisonous algae were killing 
fish in estuaries; it turned out that the algae grew where fish died. The algae 
did not cause the deaths. 

6. Regression to the mean can mislead 

Extreme patterns in data are likely to be, at least in part, anomalies 
attributable to chance or error. The next count is likely to be less extreme. 
For example, if speed cameras are placed where there has been a spate of 
accidents, any reduction in the accident rate cannot be attributed to the 
camera; a reduction would probably have happened anyway. 

7. Extrapolating beyond the data is risky 

Patterns found within a given range do not necessarily apply outside that 
range. Thus, it is very difficult to predict the response of ecological systems 
to climate change, when the rate of change is faster than has been 
experienced in the evolutionary history of existing species, and when the 
weather extremes may be entirely new. 

8. Beware the base-rate fallacy 

The ability of an imperfect test to identify a condition depends upon the 
likelihood of that condition occurring (the base rate). For example, a person 
might have a blood test that is “99% accurate” for a rare disease and test 
positive, yet they might be unlikely to have the disease. 

9. Controls are important 

A control group is dealt with in exactly the same way as the experimental 
group, except that the treatment is not applied. Without a control, it is 
difficult to determine whether a given treatment really had an effect. The 
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control helps researchers to be reasonably sure that there are no 
confounding variables affecting the results. 

10. Randomisation avoids bias 

Experiments should, wherever possible, allocate individuals or groups to 
interventions randomly. Comparing the educational achievement of 
children whose parents adopt a health program with that of children of 
parents who do not is likely to suffer from bias. 

11. Seek replication, not pseudoreplication 

Results consistent across many studies, replicated on independent 
populations, are more likely to be solid. The results of several such 
experiments may be combined in a systematic review or a meta-analysis to 
provide an overarching view of the topic with potentially much greater 
statistical power than any of the individual studies. 

12. Scientists are human 

Scientists have a vested interest in promoting their work, often for status 
and further research funding, although sometimes for direct financial gain. 
This can lead to selective reporting of results and occasionally, 
exaggeration. Peer review is not infallible: journal editors might favour 
positive findings and newsworthiness. Multiple, independent sources of 
evidence and replication are much more convincing. 

13. Significance is significant 

Expressed as P, statistical significance is a measure of how likely a result is 
to occur by chance. Thus P = 0.01 means there is a 1-in-100 probability that 
what looks like an effect of the treatment could have occurred randomly, 
and in truth there was no effect at all. Typically, scientists report results as 
significant when the P-value of the test is less than 0.05 (1 in 20). 

14. Separate no effect from non-significance 

The lack of a statistically significant result (say a P-value > 0.05) does not 
mean that there was no underlying effect: it means that no effect was 
detected. A small study may not have the power to detect a real difference. 
For example, tests of cotton and potato crops that were genetically modified 
to produce a toxin to protect them from damaging insects suggested that 
there were no adverse effects on beneficial insects such as pollinators. Yet 
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none of the experiments had large enough sample sizes to detect impacts on 
beneficial species had there been any. 

15. Effect size matters 

Small responses are less likely to be detected. A study with many replicates 
might result in a statistically significant result but have a small effect size 
(and so, perhaps, be unimportant). The importance of an effect size is a 
biological, physical or social question, and not a statistical one. 

16. Data can be dredged or cherry picked 
Advertisement 

Evidence can be arranged to support one point of view. To interpret an 
apparent association between consumption of yoghurt during pregnancy 
and subsequent asthma in offspring, one would need to know whether the 
authors set out to test this sole hypothesis, or happened across this finding 
in a huge data set. 

17. Extreme measurements may mislead 

Any collation of measures (the effectiveness of a given school, say) will 
show variability owing to differences in innate ability (teacher competence), 
plus sampling (children might by chance be an atypical sample with 
complications), plus bias (the school might be in an area where people are 
unusually unhealthy), plus measurement error (outcomes might be 
measured in different ways for different schools). However, the resulting 
variation is typically interpreted only as differences in innate ability, 
ignoring the other sources. 

18. Study relevance limits generalisations 

The relevance of a study depends on how much the conditions under which 
it is done resemble the conditions of the issue under consideration. For 
example, there are limits to the generalisations that one can make from 
animal or laboratory experiments to humans. 

19. Feelings influence risk perception 

Broadly, risk can be thought of as the likelihood of an event occurring in 
some time frame, multiplied by the consequences should the event occur. 
People’s risk perception is influenced disproportionately by many things, 
including the rarity of the event, how much control they believe they have, 
the adverseness of the outcomes, and whether the risk is voluntarily or not. 
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For example, people in the US underestimate the risks associated with 
having a handgun at home by 100-fold and overestimate the risks of living 
close to a nuclear reactor by 10-fold. 

20. Dependencies change the risks 

It is possible to calculate the consequences of individual events, such as an 
extreme tide, heavy rainfall and key workers being absent. However, if the 
events are interrelated, (for example a storm causes a high tide, or heavy 
rain prevents workers from accessing the site) then the probability of their 
co-occurrence is much higher than might be expected. 

 


	Top 20 things policy makers need to know about science
	1. Differences and chance cause variation
	2. No measurement is exact
	3. Bias is rife
	4. Bigger is usually better for sample size
	5. Correlation does not imply causation
	6. Regression to the mean can mislead
	7. Extrapolating beyond the data is risky
	8. Beware the base-rate fallacy
	9. Controls are important
	10. Randomisation avoids bias
	11. Seek replication, not pseudoreplication
	12. Scientists are human
	13. Significance is significant
	14. Separate no effect from non-significance
	15. Effect size matters
	16. Data can be dredged or cherry picked
	17. Extreme measurements may mislead
	18. Study relevance limits generalisations
	19. Feelings influence risk perception
	20. Dependencies change the risks


